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Abstract—Multi-modality image fusion aims to integrate com-
plementary data information from different imaging modalities
into a single image. Existing methods often generate either
blurry fused images that lose fine-grained semantic information
or unnatural fused images that appear perceptually cropped
from the inputs. In this work, we propose a novel two-phase
discriminative autoencoder framework, termed DAE-Fuse, that
generates sharp and natural fused images. In the adversarial
feature extraction phase, we introduce two discriminative blocks
into the encoder-decoder architecture, providing an additional
adversarial loss to better guide feature extraction by reconstruct-
ing the source images. While the two discriminative blocks are
adapted in the attention-guided cross-modality fusion phase to
distinguish the structural differences between the fused output
and the source inputs, injecting more naturalness into the results.
Extensive experiments on public infrared-visible, medical image
fusion, and downstream object detection datasets demonstrate
our method’s superiority and generalizability in both quantitative
and qualitative evaluations.

Index Terms—Image fusion, Generative model, Multi-modality.

I. INTRODUCTION

Multi-Modality Image Fusion (MMIF), a hot image pro-
cessing topic in the multimedia and low-level computer vision
community, aims to render fused images that maintain the
essential information of different modalities. This trait allows
the fused images to describe a better visual understanding and
also can be applied to subsequent high-level vision tasks, e.g.,
detection [1], [2], [3], and segmentation [4], [5]. In particular,
the Infrared-Visible Image Fusion (IVIF) is a representative
fusion task that has been widely applied [6], [7], [8], [9]. In-
frared images effectively capture thermal targets in dark envi-
ronments but lack texture details, which can hinder recognition
in applications. On the contrary, visible images maintain most
of the textual details but are sensitive to light conditions. The
IVIF task aspires to combine the advantages of both images
by fusing the thermal radiation information and texture details
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into a new image that can thoroughly describe the actual scene,
improving the performance of various downstream tasks like
Multi-Modality Object Detection (MMOD). The Medical Im-
age Fusion (MIF) aims at combining information from various
medical imaging modalities to generate a more comprehensive
and detailed representation of anatomical structures that can
help diagnosis and treatment [10].

GAN-based models use adversarial learning with zero-sum
games in a fused image and source images to fuse two inputs.
The usual strategy in MMIF task is that totally two discrimi-
nators are employed to discriminate with the fusion results and
the two source images [11], [12], [13], [1]. Most of them either
fuse the two-dimensional image pairs before input to the model
[14], [1], or did not tailor a feature extractor and corresponding
loss function to distinctively extract features with different
characteristics, weakening to feature extraction ability. Those
methods just generate the fused image which is perceptually
satisfactory by looking distributionally similar to the original
data, but fail to preserve the feature details, resulting in the
blurriness within and between functional objects.

More efficient pipelines take comprehensive feature extrac-
tion and reconstruction modules into an AE-based manner
[15], [16], [17], [18], [19]. They separately encode the two
input modalities and fuse the feature embeddings via channel
concatenation, then decode the fused embeddings to an output
image. By the manually elaborated encoder block and loss
functions, the AE-based methods tend to effectively extract
both global and local features from different modalities. Usu-
ally, the encoder and its loss are shared for both inputs [15],
[17], [18], and they concatenate features directly rather than
organically combining features from different modalities in
the fusion phase. Therefore, bias between modalities may be
introduced to the fused images, making the fused images
present more obvious traces from the image of a specific
modality but are left with inconspicuous information from
another modality, which can be verified from the experiments.

In order to solve the aforementioned problems, we devel-
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oped a novel end-to-end discriminative autoencoder model
for multi-modality image fusion (DAE-Fuse), which adopts
a two-phase adversarial learning, and a cross-attention fusion
module that endows the model with a more balanced fusion
capability together with strong generalizability. Qualitative and
quantitative experiments show that our model has achieved
state-of-the-art on multiple IVIF public datasets, and the
superiority can also be generalized to different MIF tasks.
More importantly, our approach can boost the performance
on downstream MMOD tasks without any fine-tuning.
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Fig. 1: The workflow of the adversarial feature extraction
phase. The cross-attention for fusion purpose is dismissed.

II. METHOD

A. Adversarial Feature Extraction Phase

The multi-level features are extracted by shallow and deep
encoders. Specifically, to differentiate the various frequencies
features, we deploy a Deep High-frequency Encoder (DHE,
termed ϕDH(·)) and a Deep Low-frequency Encoder (DLE,
termed ϕDL(·)) parallelly following the Shallow Encoder (SE,
termed ϕS(·, ·)). Suppose the embedding from the encoding
process is marked as: Φ(·), and the input of first and second
modalities as: α, and β. The encoding process of paired {α, β}
can be formulated as:

Φ(α) = C [ϕDH(ϕS(α)), ϕDL(ϕS(α))]

Φ(β) = C [ϕDH(ϕS(β)), ϕDL(ϕS(β))]
(1)

where C (·, ·) donates channel concatenate operation.
Since the Transformer-based models are good at extracting

low-frequency information while CNN-based models are sen-
sitive to high-frequency information [20], [21]. We construct
a Vision Transformer [22] for the DLE, and the DHE is
implemented by a ResNet18 [23]. Restormer is a Channel-
Transformer [24] architecture, which has achieved excellent
performance in shallow region reconstruction task without
increasing too much computation, so we use a channel-
Transformer block for SE to extract shallow features. While

the Reconstruction Decoder (RD, termed ρR(·)) is responsible
for reconstructing the embeddings to image. RD shares the
same architecture with SE. The decoding process of paired
{α, β} can be formulated as:

α̃ = ρR(α), β̃ = ρR(β) (2)

where α̃ and β̃ represent the images α and β after reconstruct-
ing, respectively.

The adversarial process is implemented by two discrimina-
tive blocks from different modalities (DM1 and DM2, termed
DM1(·, ·) and DM2(·, ·) respectively). Discriminative blocks is
implemented by a stack of Con2D-LeackyReLU-BatchNorm
layers and a fully connected layer. Accordingly, the adver-
sarial learning process can be formulated as minimizing the
following adversarial objective:

min
AE

max
DM1,DM2

(
E[log(DM1(α))] + E[log(DM2(β))]

+E[log(1− (DM1(α̃))] + E[log(1− (DM2(β̃))]
)

(3)

B. Attention-guided Cross-modality Fusion Phase

In this phase, we developed a feature aggregation strategy
by calculating the cross-attention weights, which is analogous
to the standard attention of Transformer [22]. We use the
same structure of discriminative blocks as before. During the
adversarial fusion step, the inputs of a discriminative block
are a fused image two source images.

1) Early Fusion: Owing to the data gap between different
modalities, current approaches in MMIF are limited to only
incorporating element-wise additions for extracted feature em-
beddings, which does not capture the important interactions.
We deploy a cross-modality attention module, making the
different embeddinga can naturally interact another modality
before fusion. After extracting features from encoders (Φ(α),
Φ(β)), embeddings of images from two modalities are ob-
tained. Here we use the embedding of α as the Query Q,
while the embeddings of β as the Key K and the Value V .
Assuming the attention guided embeddigns are denoted as:

ˆ(Φ(α)) and ˆ(Φ(β)).
2) Adversarial Fusion: First, the decoder generates fused

image from attention-guided embeddings:

F (α, β) = ρR[C ( ˆΦ(α), ˆΦ(β))] (4)

Then, the adversarial process is adapted to following for-
mulation:

min
AE

max
DM1,DM2

(
E[log(DM1(α))] + E[log(DM2(β))]+

E[log(1− (DM1(F (α, β)))] + E[log(1− (DM2(F (α, β)))]
)

(5)

C. Loss Function

1) Phase one: We construct the loss function for the
autoencoder and discriminative blocks separately. The loss



Fig. 2: Qualitative comparison with state-of-the-art methods on TNO and MRI-CT dataset.

function of AE is divided into two parts: adversarial loss and
content loss:

LAE
I = λLAE

advI+σLcorrelation
Enc +(1−σ)LDec

content (6)

where the σ is the hyper-parameter. And the adversarial loss
for encoder-decoder is:

LAE
advI = E[log(1−(DM1(α̃))]+E[log(1−(DM2(β̃))] (7)

Additionally, we use correlation decomposition loss [16] for
differentiate high-frequency feature and low-frequency feature:

Lcorrelation
Enc =

(CC(ϕDH(α), ϕDH(β)2

CC(ϕDL(α), ϕDL(β)) + ϵ
(8)

where ϵ set 1.01 to ensure the result always be positive.
The decoder reconstruction loss function consists of the

square of the L2 norm and structural similarity index:

LDec
content = ∥α−D(α)∥22 + (1− SSIM(α,D(α))) (9)

The adversarial loss of discriminative block DM1 and DM2
are of same structure. Take DM1 as an example:

LDM1
advI = E[− log(DM1(α))] + E[− log(1− (DM1(α̃))]

(10)
As a sum, the total discriminative block losses can be

formulated in:

LDM
advI = LDM1

advI + LDM2
advI (11)

The overall loss function of phase one is defined as:

LI = LDM
advI + LAE

I (12)

2) Phase two: Since the inputs of discriminative blocks
have been changed, we represent the adversarial loss of phase
two LDM

advII follow the Eq. 5.
The content loss function for decoder in phase two can be

formulated as:

LAE
II = Ltext

II + Lint
II + LAE

advII (13)

And the adversarial loss for the encoder-decoder is defined
as:

LAE
advII = E[− log(1− (DM1(F (α, β)))]

+E[− log(1− (DM2(F (α, β)))]
(14)

Fig. 3: The workflow of the attention-guided cross-modality
fusion phase.

Also, we use the structural content loss [25] as:

Ltext
II =

1

HW
∥∇If −max(|∇α|, |∇β|)∥1 (15)

Lint
II =

1

HW
∥If −max(α, β)∥1 (16)

Thus, the whole losses in phase two can formulated as:

LII = LDM
advII + LAE

II (17)

III. EXPERIMENTS

A. Setup

1) Datasets and metrics: The IVIF experiments use three
benchmarks: MSRS [26], RoadScene [27], and TNO [28], with
only part of MSRS images used for training. MIF experiments
utilize data from the Harvard 670 Medical Website [29] for
testing.

For the MMOD [1] downstream task, the M3FD dataset,
consisting of 4200 infrared-visible image pairs across six cat-
egories, is employed. IVIF and MIF tasks are evaluated using
eight metrics: entropy (EN) [30], standard deviation (SD)
[31], spatial frequency (SF) [32], visual information fidelity



TABLE I: Quantitative comparisons on TNO (IVIF), MRI-CT (MIF), and RoadScene (MMOD) datasets. Bold red indicates
the best, and bold blue indicates the second best.

Method Dataset: TNO Dataset: MRI-CT Dataset: RoadScene

EN SD SF MI SCD VIF Qabf EN SD SF MI SCD VIF Qabf Peo Car Lam Bus Mot Tru mAP@50%

DIDFuse 6.97 45.12 12.59 1.63 1.71 0.58 0.42 4.37 58.34 34.64 1.71 0.69 0.41 0.38 0.791 0.924 0.857 0.833 0.787 0.788 0.830
U2Fusion 6.83 35.66 11.52 1.35 1.71 0.61 0.44 4.21 61.98 32.54 2.08 0.75 0.37 0.46 0.802 0.922 0.870 0.839 0.783 0.786 0.833
RFN-Nest 6.84 34.50 13.23 1.76 1.67 0.55 0.39 4.97 70.36 33.42 1.98 0.68 0.43 0.52 0.813 0.915 0.851 0.829 0.813 0.875 0.849
DDcGAN 6.78 46.33 11.68 1.78 1.72 0.48 0.35 4.26 62.56 30.61 1.72 0.65 0.38 0.42 0.797 0.908 0.832 0.895 0.805 0.872 0.851
TarDAL 7.02 45.63 10.68 2.17 1.62 0.57 0.32 4.35 61.14 28.38 1.94 0.92 0.32 0.56 0.835 0.947 0.854 0.928 0.811 0.874 0.874
CDDFuse 7.12 45.89 13.15 2.11 1.76 0.76 0.54 4.49 71.36 34.02 2.16 1.18 0.44 0.56 0.846 0.928 0.864 0.931 0.813 0.891 0.878
DDFM 7.06 48.42 13.03 2.06 1.66 0.83 0.49 4.77 69.35 32.77 1.98 1.03 0.41 0.54 0.837 0.926 0.869 0.927 0.809 0.882 0.875
Ours 7.17 46.63 13.31 2.21 1.89 0.75 0.55 4.83 76.19 35.56 2.20 1.21 0.49 0.57 0.855 0.931 0.874 0.949 0.822 0.890 0.887

(VIF) [33], sum of correlation of differences (SCD) [32],
mutual information (MI) [32], QAB/F [32], and structural
similarity index measure (SSIM) [34]. For MMOD, detection
performance is measured by mAP@50% with higher values
indicating better results.

2) Implementation Details: Our experiments were imple-
mented based on the PyTorch framework and performed on
a server with an NVIDIA A100 GPU. In the MMOD down-
stream testing, the generated 4200 fused images is partitioned
into training, validation, and test sets, with an 8:1:1 ratio for
a YOLOv8n [35].

B. Infrared-Visible Image Fusion

We tested our model on the three IVIF datasets and
compared them with seven state-of-the-art methods including
DIDFuse [15], U2Fusion [36], RFN-Nest [19], DDcGAN [14],
TarDAL [1], CDDFuse [16] and DDFM [37].

1) Qualitative comparisons: As shown in Figure 2, the
selected scenario highlights feature extraction and model bias.
DDcGAN and TarDAL, both GAN-based models, exhibit
noticeable blurriness and detail loss. DIDFuse, an AE-based
method, shows a clear bias towards infrared images, darkening
the sky and grass. Our DAE-Fuse, however, delivers the best
results, preserving rich textural details and balancing both
input modalities seamlessly. Notably, it maintains intact roof
textures, unlike other methods. CDDFuse, which also uses a
parallel encoder, partially retains roof details but overexposes
some areas and introduces extra noise on the house wall. In
contrast, DAE-Fuse fuses wall textures naturally from both
inputs.

2) Quantitative comparisons: Afterward, we used the seven
metrices to quantitively compare the results with other mod-
els, which are displayed in Table I. DAE-Fuse shows an
outstanding performance across all the measurement indices,
demonstrating the effectiveness of our method.

C. Generalization on MIF tasks

To validate the generalizability of our DAE-Fuse, we used
the same models in our IVIF testing to fuse medical images.

1) Qualitative comparisons: Figure 2 compares the MRI-
CT fusion results of different models. Similar to IVIF exper-
iments, GAN-based models appear fused but are blurry and

Visible image Infrared image Fused image

Fig. 4: Example of the distinct detection ability of the sourse
images and our fused image.

detail-poor. AE-based methods generally perform better in fea-
ture extraction. However, models like U2fusion and RFN-Nest
underweight CT images, leading to darker outlines, whereas
DIDFuse emphasizes CT features. Our method integrates both
images effectively, preserving all texture details without bias,
demonstrating superior generalization.

2) Quantitative comparisons: Similarly, seven metrics are
adopted to quantitatively compare the result, which are dis-
played in Table I. DAE-Fuse has the best score on almost all
metrics, indicating that out method can be generalized to MIF
tasks without any adjustment, and suitable for various kinds
of MIF tasks.

D. Downstream MMOD task

Multi-Modality Object Detection is an important down-
stream task of image fusion. A single modality image i.e.,
an individual infrared image usually lacks certain features
of objects during the detection process. As shown in Figure
4, infrared images exhibit a robust capability for detecting
humans but may overlook objects that do not produce thermal
radiation. On the other hand, visible images struggle to recog-
nize humans due to reflective lights from vehicles and lamps.
After fusing the images from two modalities, by combining the
advantages of two types of features, both humans and vehicles
are well detected in the fusion image.

IV. CONCLUSION

In conclusion, DAE-Fuse overcomes limitations in image
fusion, producing sharp and natural images through adversarial
feature extraction and attention-guided fusion. Discriminative
blocks in both phases enhance feature extraction and structural
fidelity. Public dataset experiments demonstrate DAE-Fuse’s
superiority over existing methods.
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