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Abstract

Although multi-modality medical image segmentation holds
significant potential for enhancing the diagnosis and under-
standing of complex diseases by integrating diverse imaging
modalities, existing methods predominantly rely on feature-
level fusion strategies. We argue the current feature-level fu-
sion strategy is prone to semantic inconsistencies and mis-
alignments across various imaging modalities because it
merges features at intermediate layers in a neural network
without evaluative control. To mitigate this, we introduce
a novel image-level fusion based multi-modality medical
image segmentation method, Fuse4Seg, which is a bi-level
learning framework designed to model the intertwined de-
pendencies between medical image segmentation and med-
ical image fusion. The image-level fusion process is seam-
lessly employed to guide and enhance the segmentation re-
sults through a layered optimization approach. Besides, the
knowledge gained from the segmentation module can effec-
tively enhance the fusion module. This ensures that the re-
sultant fused image is a coherent representation that accu-
rately amalgamates information from all modalities. More-
over, we construct a BraTS-Fuse benchmark based on BraTS
dataset, which includes 2040 paired original images, multi-
modal fusion images, and ground truth. This benchmark not
only serves image-level medical segmentation but is also the
largest dataset for medical image fusion to date. Extensive
experiments on several public datasets and our benchmark
demonstrate the superiority of our approach over prior state-
of-the-art (SOTA) methodologies.

Introduction

In medical imaging, segmentation is a critical task that
involves identifying and delineating anatomical structures
or pathological regions within images (Chen et al.| 2022
Isensee et al. 2018 [Ibtehaz and Kihara|[2023). Traditional
single-modality approaches often fall short in providing
comprehensive insights, as each imaging modality has its
own strengths and limitations (Lou, Guan, and Loew|2021;
Huang et al.|2020)). Recent research has increasingly focused
on the handling of multimodal information. In the domain
of medical image analysis, Multi-Modality Medical Image

“Part of this research was performed during Yuchen Guo’s in-

ternship at MMLab@SIAT, CAS.
"Corresponding author.

Segmentation (MM-MIS) represents a prominent research
direction. MM-MIS is dedicated to exploiting the comple-
mentary information afforded by various imaging modali-
ties, e.g. Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), Positron Emission Tomography (PET)
and efc., to enhance the precision and robustness of medi-
cal image segmentation.

Among the various imaging techniques, Multi-Modality
MRI has gained considerable attention due to its ability to
capture different aspects of tissue characteristics, i.e., T1,
Tlce, T2-weighted MRI, and FLAIR MRI images each pro-
vide unique information about tissue structures and abnor-
malities. T1-weighted images are particularly useful for vi-
sualizing anatomical details and identifying structural ab-
normalities, while T2-weighted images enhance the visibil-
ity of lesions and edema. FLAIR MRI, on the other hand, is
especially effective in detecting abnormalities in areas close
to cerebrospinal fluid.

The integration of multimodal MRI images seeks to har-
ness the strengths of each modality to enhance the accu-
racy of segmentation tasks. Existing approaches often rely
on feature-level fusion strategies (Chen et al.|2017, [2018),
which aggregate in the intermediate layers of the segmenta-
tion architecture, as illustrated in Fig. (1| (right). These meth-
ods extract features in the initial stages of the entire seg-
mentation architecture and then combine different feature
maps through simple concatenation or element-wise aggre-
gation operations before obtaining the final fused embedding
through a decoder. While these approaches may preliminar-
ily merge modality-specific pathological information, they
are prone to semantic inconsistencies and misalignments
across different modalities. This leads to a “black box” sce-
nario, where the intermediate fusion processes and their ef-
fects on segmentation outcomes remain inadequately under-
stood. Despite achieving promising visual results and lead-
ing performance metrics in segmentation tasks, the lack of
effective evaluation and interpretability of the fusion pro-
cess remains a significant challenge, known as the semantic
inconsistencies and misalignments problem (Lu et al.|2016;
Atrey, Singh, and Bodhey|2024).

On the other hand, current image fusion methods mainly
focus on situations in general environments based on in-
frared image and visible image (IVIF), while the technology
for multimodal fusion of medical images (MIF) remains in
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Figure 1: (left) The bi-level optimization learning process with fusion task as the leader and segmentation task as follower.
(right) Existing Multi-Modality Medical Image Segmentation Methods vs. Our Fuse4Seg. The DHE and DLE are donotes to
Deep High-frequency Encoder and Deep Low-frequency Encoder, respectively.

its nascent stages. Existing MIF primarily emphasizes im-
proving the visual quality of fused images and optimizing
evaluation metrics for these images, without addressing the
development of suitable medical downstream tasks.

To mitigate these challenges, we present a novel image-
level fusion based multi-modality medical image segmen-
tation approach, Fuse4Seg. It is a bi-level learning frame-
work designed to model the intertwined dependencies be-
tween medical image segmentation and medical image fu-
sion, with the ultimate aim of guiding a bi-level optimization
formulation for the joint problem towards a stable optimum.
Fuse4Seg is comprised of two modules involving fusion net-
work and segmentation network.

During the pre-training stage, we introduce two discrim-
inative blocks into a correlation driven encoder in the fu-
sion module. The purpose of these discriminative block is
to guide the feature decomposition and extraction capabili-
ties of encoder throughout the reconstructive process. In the
main training stage, a cooperative training strategy is em-
ployed to learn the optimal parameters for both the fusion
and segmentation modules. As illustrated in Fig. 1 (left),
the image fusion task is assigned as the upper-level prob-
lem, while the image segmentation task is designated as the
lower-level problem. This hierarchical structure allows the
fusion process to guide and enhance the segmentation re-
sults through a layered optimization approach.

By fusing at the image level, our approach inherently
maintains the semantic integrity of the input data. This en-
sures that the resultant fused image is a coherent repre-
sentation that accurately amalgamates information from all
modalities. The dual network structure further fine-tunes
both the fusion and segmentation processes in unison, lead-
ing to more precise and reliable segmentation outcomes. The
bi-level optimization guarantees that the fusion process is
tailored to maximize the utility of the resulting image for
subsequent segmentation tasks. This underscores the critical
role of image-level fusion in enhancing the overall effective-
ness of the system. Our contributions can be summarized as
four aspects:

* We first propose an image-level fusion guided multi-
modality medical image segmentation framework,
termed Fuse4Seg. Extensive experiments conducted on
several public datasets and our benchmark demonstrate
that our method boost the performance compared to
state-of-the-art (SOTA) approaches.

* We design a joint fusion-segmentation network utilizing
a bi-level optimization learning formulation, which si-
multaneously addresses both tasks, producing not only
superior fusion results but also enhanced segmentation
performance.

* We introduce a two training scheme from the bi-level for-
mulation yielding optimal network parameters, which in-
cludes a pre-train stage and a cooperative training stage
with newly designed loss function to enhance the overall
performance and convergence of the network.

* We build a brain tumor fusion image dataset specifi-
cally for medical segmentation (BraTS-Fuse) based on
BraTS2021, which contains 2,040 aligned cases. Each
case includes different T1 modality images, T1ce modal-
ity images, T2 modality images, FLAIR modality im-
ages, a segmented ground truth, and a series of cross-
fused images.

Related Works
Medical Image Segmentation

Medical image segmentation, a critical task involving pixel-
wise classification of anatomical structures across imaging
modalities like MRI and CT, has seen substantial advance-
ments with U-shaped networks (Chen et al.| 2022} [Isensee
et al.|2018; [Ibtehaz and Kiharal2023; |Lou, Guan, and Loew
2021} [Huang et al[[2020). Other notable developments in-
clude DeepLab series (Chen et al.|[2017, [2018), which em-
ployed atrous convolutions and spatial pyramid pooling
for effective multi-scale information processing. Moreover,
TransUNet (Chen et al.|[2021)) combining CNNs for local
feature extraction with transformers for global context mod-
eling, and Swin-Unet (Cao et al.|2022) incorporating Swin
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Figure 2: The overall framework of our Fuse4Seg, which consist of a fusion module and a segmentation module.

Transformer blocks within a U-shaped architecture. How-
ever, these methods predominantly focus on feature-level fu-
sion, thereby neglecting the significance of the holistic im-
age.

Image Fusion

Current image fusion research predominantly targets in-
frared and visible image fusion (IVIF), with limited focus on
medical images (MIF). Existing multi-modality image fu-
sion methods can be categorized into two main groups: gen-
erative models (Ma et al.|[2019, 2020a.b) and autoencoder-
based models (L1 and Wu|2018}; |[L1, Wu, and Kittler|2021a;
Zhang and Mal[2021)). Generative models use GANs (Ma
et al. 2019, 2020a/b) or denoising diffusion models (Zhao
et al.[[2023b) to represent the latent space distribution of
fused and source images. Autoencoder-based models em-
ploy encoder/decoder structures with CNNs or Transform-
ers. Moreover, for the natural images, multi-modality im-
age fusion is often part of coupled systems, incorporating
downstream tasks like object detection and segmentation
(Liu et al.|2023} 2022} |Sun et al.[2022} Tang, Yuan, and Ma
2022). Our work successfully bridge this gap in MIF.

Methodology

In this section, we present the formulation of our bi-level
optimization framework, followed by the solution process
and corresponding cooperative training strategy employed.
We then introduce our joint fusion-segmentation network,
detailing the loss functions for each components.

Bi-level Optimization

Initially, the medical image fusion (MIF) considered as a
preliminary task for the joint cross-modality features based
medical iamge segmentation (MIS). This method aims to
bridge the gap between medical image fusion and segmenta-
tion, which named image-level fusion guided segmentation,
enhanced visual quality and improved semantic understand-
ing, benefiting subsequent analytical tasks. We assume that
both images with different modalities, M1 and M2, are of
size m X n and represented as column vectors x, y. Addi-
tionally, we use § € R™"*! for representation to the fused
result.

In this paper, bi-level optimization problem is mod-
eled using Stackelberg game theory (Colson, Marcotte, and
Savard| 2007; |Ochs et al.|[2015)), where the fusion mod-
ule plays the role of leader (upper-level task) and the seg-
mentation acts as the follower (lower-level task). Differ-
ent to other methods, We first introduce the framework in
which the medical segmentation module uses the fused im-
age generated by the fusion module as input. This structure
naturally captures the sequential nature of our task, as fu-
sion precedes segmentation, and allows us to optimize both
tasks simultaneously while maintaining their individual ob-
jectives. Meanwhile, by taking the fusion strategy on im-
age dimension, our approach avoids the problem including
misalignment and semantic displacement because the pixel
is matched scale for the inputs and corresponding output.
Moreover, Stackelberg game theory provides a mathemat-
ical framework for optimization process handling the in-
terdependence between fusion and segmentation. Initially,
supposing the fusion process can be donated as F, and let



0 = F(M1,M2) formally, so the bi-level optimization
problem is expressed as:

min £° (¥ (0*; ws)) ,

s.t. 0 € arg meinf(ﬂ; x,y) + gm1(0;x) + gm2(05y),
ey

where w, denotes the parameters of the segmentation net-
work, U represents the segmentation network, gas1(+) and
gar2(+) are constraints for the two modalities, and f(-) is a
fidelity term.

To achieve visually appealing fused images and accurate
scene segmentation results, we jointly formulate the two
tasks as:

min L£° (V(0%;wy)),s.t. 0" = ®(x,y;wy), )
Ws,Wyr

where ® represents the medical image fusion network
(fo(0,¥(z,y;wy))) and ¥ represents the segmentation net-
work (fs(s, U(x,y;ws))). A visual illustration is provided
in Fig.[T| (left).

Training Strategy

Training the joint fusion and segmentation networks in-
volves solving the bi-level optimization problem with re-
spect to w = {ws,wy}. Follow the (Fan et al.[2024), We
develop a numerical solution starting from the upper-level
objective, computing its gradient with respect to w:

Ve, L2(W(07;ws)) = Vo, £2(¥(0; ws))

VLN (U(0:w )V, 0" O

where the first term is the direct gradient with respect to wg,
and the second term accounts for the latent connection with
the fusion network.

To efficiently compute gradients, we use the Gauss-
Newton approximation, which simplifies the problem to
first-order computations. The gradient response 6* is ex-
pressed as:

VoL?® = VoL (V(0" (ws);ws)) Ve 07 4

Using the implicit function theorem, we avoid compu-
tationally expensive nested optimization loops. By setting
oL [Ow ¢ = 0, we obtain the gradient of 8* with respect to
wy as follows:

sze*(ws) = - [Vgeﬁf(é(xay;wf))]_l : WH€S7 (5)

where V3, denotes the second-order partial derivatives of
the fusion loss function £/ with respect to 6, and Wy, =
V5 0. L7 (8, w;) represents the cross-gradient term. This ex-
pression involves the inversion of the second-order deriva-
tives and the Hessian matrix.

Then, we introduce the new fusion regularity term £/ into
the total loss function and use it as a weighting term for de-
tecting losses:

min £° (W(0%;w,)) + ALY (@(x,y507))
werldf (6)
s.t. 0 = &(x,y;wy),

where loss gradients with respect both w;, wy can be cal-
culated as:

OL® 0L 0¥y 0L 0L 0V, 0V oLy 0¥,
8(.03 o 8\113 8(.4.)3 ’ 860]0 B 8\113 3\11]0 &uf 8\1/f ach.
(7

Fusion module

Pre-trained Decomposition Encoder Initially, we intro-
duce the correlation coefficient guided pre-trained dual
stream encoder. As discussed in (S1 et al.|2022; L1 et al.
2022), Convolutional Neural Network (CNN) based mod-
els are proficient at capturing high-frequency local informa-
tion, whereas Transformer-based models are primarily ori-
ented towards processing low-frequency global features. We
adopt Lite Transformer (Wu et al.[2020) blocks leveraging
longrange attention to handle low-frequency global features
and Invertible Neural Networks blocks focusing on extract-
ing high-frequency local information. This architecture is in-
spired by (Ardizzone et al.|[2018), we redesign it through
a large-scale medical image dataset using extensive image
pairs.
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Figure 3: The diagram illustrates the architecture of a pre-
trained dual-stream decomposition encoder.

Image Level Fusion Network The image-level fusion
network leverages a pre-trained encoder to extract both
modality-specific and modality-shared features. Then the
same frequency features from different modalities fused re-
spectively, then combined by cross-attention. As shown in
Fig. |2} after extracting features from encoders (®(M1),
®(M?2)), embeddings of images from two modalities are ob-
tained. Here we use the embedding of M1 as the Query @,
while the embeddings of M2 as the Key K and the Value V.
Assuming the attention guided embeddigns are denoted as:

(@(Ml)) and ((D(MQ)) The mapping can be expressed as:

CroAttng (ar1)—a(a2)(P(M1), 2(M2))

(W, (M 1)D(M2)" W)
Vdy,

= Accoun Wy (2(M2)) — (2(32)) ®)

where W,, W,, and Wy, are trainable weight matrices mul-
tiplied to queries (Qa(ar1)) and key-value pair (Kg(pr2),

= softmax ( ) W,®(M2)
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Vo (nm2)), and Aroatn 18 the cross-attention matrix for com-
puting the weighted average of ®(M2).

Furthermore, the attention maps generated during this
process are utilized to highlight semantic information within
the fused image. These maps provide a clear visualization
of the regions where important features from each modality
are being integrated, helping to ensure that critical seman-
tic content is preserved during fusion. This approach allows
the model to focus on the most relevant parts of each image,
thereby enhancing the semantic coherence of the final out-
put. Additionally, the attention maps offer insights into the
contribution of each modality at a more granular level.

Segmentation module

In the segmentation module, we continue to employ a CNN-
Transformer architecture to maintain coherence with the fu-
sion module. However, we adopt a hybrid approach that
integrates the Transformer within the CNN framework as
our backbone in TransUNet, and we combine each small
block in a manner resembling the MedSAM2d architecture
within the segmentation module. By leveraging the strengths
of both convolutional operations and attention mechanisms,
this hybrid framework significantly enhances segmentation
performance. As introduced in (Cheng et al.[2023), A skip
connection is added after each adapter layer. More detail
statements are shown in supplementary materials.

Loss Function

In this section, we will first introduce the loss function for
the image fusion module and the corresponding pre-training
stage, followed by a discussion of the loss function for the
segmentation module.

Loss Function for Pre-Training Stage The loss function
for pre-training decomposition encoder is divided into two
parts: adversarial loss and content loss:

EEnc — )“C(LEOZJC + O_‘C%);Zelation + (1 _ U)E%):llzent (9)

where ¢ and A are hyper-parameters controlling the trade-off
between these terms.

We design the adversarial game between image be-
fore/after reconstruction for pre-training. The adversarial
loss for the encoder can be written as:

Lo — T [log (1 — DMl(Ml)”
+E {log (1 - DMQ(M2)>] (10)

Additionally, we use correlation decomposition loss
(Zhao et al.||2023a) to differentiate high-frequency features
from low-frequency features:

Ecorrelation — CC(¢DH(M1)7 ¢DH (M2))2
e CC(¢pr(M1),6pL(M2)) + €

where € is set to 1.01 to ensure the result is always positive.

In the pre-train stage, we introduce the content loss func-
tion consists of the square of the Lo norm and structural sim-
ilarity index:

£5ment — | M1— D(M1)||2+ (1—SSIM(M1, D(M1)))
(12)

Loss Function for Fusion Module In this training stage,
the inputs of the discriminative blocks have changed to
fused image and two source images, respectively. we repre-
sent the adversarial loss in Eq. [I0] where the input becomes
6 = F(M1, M2). Similarly, the content loss for this stage
changed as:

Y

13)

1
[’tezt = W Hv‘[f - max(|VM1\7 ‘VM2|)H1

Loss function for segmentation module The segmenta-
tion module only trained in the cooperative training stage,
and the entire loss function can be divided into a cross-
entropy loss and a dice loss, which are written as:

L = alcg + BLpice- (14)

Benchmark

In multi-modality medical image segmentation (MIS), most
existing datasets predominantly contain source images and



Table 1: Quantitative comparisons on BraTS-Fuse datasets for MIF and MIS. Bold red indicates the best, and bold blue
indicates the second best. First row present the fusion comparisons and second row present sgementation results.

Dataset: T1-T2 Fusion

Dataset: T1-T1ce Fusion

Dataset: T1-FLAIR Fusion

EN SD SF MI SCD VIF Qabf

EN SD SF

MI SCD VIF Qabf

EN SD SF MI SCD VIF Qabf

DID 4.37 58.34 34.64 1.71 0.69
U2F 4.21 61.98 32.54 2.08 0.75
RFN 4.97 70.36 33.42 1.98 0.68
DDc 4.26 62.56 30.61 1.72 0.65
Tar 4.3561.14 28.38 1.94 0.92

0.41 0.38
0.37 0.46
0.43 0.52
0.38 0.42
0.32 0.56

DID
U2F
RFN
DDc
Tar

3.97 65.12 24.62 1.63 0.42
3.83 59.66 24.58 1.61 0.44
3.84 64.50 25.51 1.77 0.39
3.78 66.33 23.48 1.72 0.35
4.02 65.63 23.54 1.62 0.32

0.41 0.53
0.32 043
0.52 0.62
0.36 0.47
0.46 0.54

DID 2.97 55.12 13.69 1.51 0.42
U2F 3.45 45.66 14.58 1.54 0.44
RFN 3.53 44.50 16.51 1.89 0.39
DDc 3.3349.33 13.48 1.72 0.35
Tar 3.02 65.63 15.54 1.62 0.32

0.46 0.51
0.36 0.45
0.51 0.62
0.46 0.36
0.48 0.58

CDD 4.49 71.36 34.02 2.16 1.18
DDF 4.77 69.35 32.77 1.98 1.03
Ours 4.83 76.19 35.56 2.2 1.21

0.44 0.56
0.41 0.54
0.49 0.57

CDDF 4.02 74.15 25.48 1.78 1.42
DDF 4.06 71.42 25.69 1.66 0.49
Ours 4.4575.1129.2 1.87 1.68

0.57 0.65
0.54 0.71
0.66 0.65

CDD 3.67 52.68 17.32 1.83 0.96
DDF 3.57 56.42 16.81 1.66 0.49
Ours 4.17 62.61 22.56 1.87 1.58

0.58 0.64
0.53 0.55
0.68 0.70

Dataset: T1-T2 Segmentation

Dataset: T1-T1ce Segmentation

Dataset: T1-FLAIR Segmentation

Dice(%) mloU HD95

Dice(%) mloU HD95,

Dice(%) mloU HD95

UNet 3+ 85.23  79.12 6.84 UNet 3+ 88.14  81.76 5.45 UNet 3+ 86.92 80.34 5.87
AttnUNet 87.56 81.34 5.67 AttnUNet 89.67  83.32 4.98 AttnUNet 88.45 82.12 5.35
SwinUNet 84.76  82.07 5.42 SwinUNet 89.33  84.02 4.72 SwinUNet 88.50  82.60 5.14
CASCADE 86.45 80.21 6.12 CASCADE 88.76  82.455.21 CASCADE 87.56 81.02 5.61
EMCAD 87.12  78.64 7.03 EMCAD 88.34  80.67 5.78 EMCAD 86.13  79.68 6.02
FILM+nnUNet 88.05  82.36 5.31 FILM+nnUNet 89.98  83.90 4.61 FILM+nnUNet 8892  82.70 5.03
FILM+nnUNet-p 88.32  81.02 5.58 FILM+nnUNet-p 90.00  83.50 4.85 FILM+nnUNet-p 89.02  82.84 5.27
Ours 89.24  83.45 4.97 Ours 90.85 85.23 4.48 Ours 89.78  84.12 4.89

their corresponding segmentation ground truths. However,
the introduction of a new segmentation framework that
leverages fused images necessitates the creation of a robust
benchmark. In this study, we employ brain MR images as
a quintessential example of MIS due to their widespread
application in both clinical practice and research. Brain
MR images, encompassing modalities such as T1, T2, and
FLAIR, provide a wealth of complementary information
crucial for precise segmentation. For instance, T1-weighted
images offer intricate details of the anatomical structure,
T2-weighted images emphasize fluid and pathological alter-
ations, while FLAIR images excel in lesion visualization.
Our goal is to assemble a comprehensive multi-modality fu-
sion baseline image dataset, comprising images fused from
2, 3, and 4 modalities. This foundational fusion dataset
serves as a springboard for future research, enabling further
exploration and enhancement of medical image segmenta-
tion quality by utilizing fused images as inputs within inno-
vative architectural frameworks for segmentation models.
On the other hand, the only widely-used existing medi-
cal image fusion dataset is the Harvar dataset, which con-
tains approximately 300 paired images. Although valuable
for various studies, it falls short of meeting the demands
of current advanced models, highlighting a significant data
scarcity issue that challenges researchers aiming to improve
rigorous and comprehensive models accuracy and robust-
ness. Our dataset, which contains 2,040 paired case images,
addresses this critical gap by providing a more extensive and

"http://www.med.harvard.edu/AANLIB/home.html

diverse collection of medical images.

Data Processing

To obtain high-quality image level fusion based medical im-
age segmentation source pairs, we adopt the following four
stages to process the raw data. Fig. x illustrate our data pro-
cessing pipeline and samples.

Stage I: 3D Volumetric Data Acquisition. Employ the
state-of-the-art medical imaging library SimpleITK|"|to load
the decompressed 3D data. This process results in a three-
dimensional array containing the volumetric data, where
each element corresponds to a voxel.

Stage II: Brain Extraction. Utilize advanced brain ex-
traction tools HD-BET(Isensee et al.|2019) to process the
3D data and isolate the brain region. This step effectively re-
moves non-brain tissues, ensuring that subsequent process-
ing is concentrated solely on the brain tissue.

Stage III: 2D Slice Generation and Image Preservation.
Extract 2D slices from the processed 3D data, selecting the
slice orientation based on specific requirements, such as ax-
ial cross-sections. Each slice is saved as an individual ‘.png*
image file, ensuring that the resolution and image quality
meet the required standards.

Stage IV: Comprehensive Cross Multi-Modality Image
Fusion. Apply our fusion model to generate fused images
from combinations of two, three, and four modalities. This
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Figure 5: The fusion and segmentation results.

stage integrates information across multiple modalities to
produce comprehensive fusion images. The specific fusion
metrics, along with comparative experiments, are presented
in next section.

Experiments

We not only evaluate our model on Medical Image Seg-
mentation (MIS) tasks but also conduct comparative exper-
iments with other Medical Image Fusion (MIF) models for
our fused images. To demonstrate the applicability of our
approach in both MIS and MIF, we utilize training data
from the BraTS-Fusion dataset that we built. Additionally,
to ensure a fair comparison with state-of-the-art MIF meth-
ods, we adhere to the same test set used in previous work,
following the official train/test split for the Harvard evalu-
ation. Furthermore, we compare the performance of other
MIS state-of-the-art methods on the BraTS2021 dataset. Our
experiments were implemented based on the PyTorch frame-
work and performed on a NVIDIA A100 GPU.

Setup

For the pre-trained encoder, we trained 80 epochs for both
the encoder-decoder and discriminative block, while in the
fusion phase, the model was trained with 140 epochs. We
use the Adam optimizer for the encoder-decoder and the dis-
criminative block, with an initial learning rate of 1e-4, which
decreases by a factor of 0.5 every 20 epochs. The training
samples are randomly cropped into 224 x 224 patches in
preprocessing stage and the batch size is set to 16. The seg-
mentation module is trained using the SGD optimizer with
a learning rate of 0.01, momentum of 0.9, and weight decay
of le-4.

Visualization of medical image fusion

In this section, we first evaluate the image fusion results with
the state-of-the-art methods including DIDFuse (Zhao et al.
2020), U2Fusion (Xu et al.[[2020), RFN-Nest (L1, Wu, and
Kittler|[2021b)), DDcGAN (Ma et al.|[2020c)), TarDAL (Liu

Table 2: Quantitative comparisons on MRI-CT, MRI-PET,
and MRI-SPECT datasets. Bold red indicates the best, and

bold blue indicates the second best, respectively.
Dataset: MRI-CT
EN SD SF MI SCD VIF Qabf

DIDFuse 4.37 5834 34.64 171 0.69 041 0.38
U2Fusion 4.21 61.98 3254 2.08 0.75 0.37 0.46
RFN-Nest 4.97 7036 3342 198 0.68 043 0.52
DDcGAN 4.26 62.56 30.61 1.72 0.65 0.38 0.42
TarDAL 435 61.14 2838 194 092 0.32 0.56
CDDFuse 4.49 7136 34.02 2.16 1.18 0.44 0.56
DDFM 477 6935 3277 198 1.03 041 0.54
Ours 483 76.19 3556 22 121 049 0.57

Dataset: MRI-PET
EN SD SF MI SCD VIF Qabf

DIDFuse 397 65.12 24.62 1.63 042 041 0.53
U2Fusion 3.83 59.66 24.58 1.61 0.44 0.32 0.43
RFN-Nest 3.84 64.50 2551 1.77 039 0.52 0.62
DDcGAN 3.78 6633 2348 1.72 035 0.36 0.47
TarDAL  4.02 65.63 2354 1.62 032 046 054
CDDFuse 4.02 74.15 2548 1.78 1.42 0.57 0.65
DDFM 4.06 7142 25.69 1.66 049 054 0.71
Ours 445 7511 292 1.87 1.68 0.66 0.65

Dataset: MRI-SPECT
EN SD SF MI SCD VIF Qabf

DIDFuse 297 55.12 13.69 1.51 0.42 046 0.51
U2Fusion 345 45.66 14.58 1.54 0.44 0.36 045
RFN-Nest 3.53 44.50 16.51 1.89 039 0.51 0.62
DDcGAN 3.33 4933 1348 1.72 035 046 0.36
TarDAL  3.02 65.63 1554 1.62 032 048 0.58
CDDFuse 3.67 52.68 1732 1.83 096 0.58 0.64
DDFM 357 5642 16.81 1.66 049 0.53 0.55
Ours 4.17 62.61 2256 1.87 158 0.68 0.70

et al.[2022), CDDFuse (Zhao et al.|2023a) and DDFM (Zhao
et al.[2023c).

Qualitative Comparisons The qualitative results of our
method and other competitive approaches are shown in
Fig.[6] using an MRI-CT fusion example from the Harvard
dataset.

Quantitative Comparisons There are usually eight unsu-
pervised metrics to measure the quantitative performance
of MIF task including entropy (EN) (Roberts, Van Aardt,
and Ahmed|[2008), standard deviation (SD) (Eskicioglu and
Fisher|1993)), spatial frequency (SF) (Ma, Ma, and L12019),
visual information fidelity (VIF) (Han et al.||2013)), sum of
correlation of differences (SCD) (Ma, Ma, and Li [2019),
mutual information (MI) (Ma, Ma, and Li/[2019), Q45/F
(Ma, Ma, and L1/2019) and structural similarity index mea-
sure (SSIM) (Wang et al.|[2004). Tab. [I] and Tab. [2] demon-
strate the quantitative comparison results on Harvard MRI-
CT, MRI-PET, MRI-SPECT and our BraTlS-Fuse dataset
with two modalities, respectively. More experiment results
with three and four modalities on our benchmark are shown
in the supplementary material.



Table 3: Ablation comparisons of our method on entire quantitative unsupervised metrics. Bold red indicates the best, bold

blue indicates the second best.

Configurations EN SD VIF SF MI SCD Qabf
w/o Reconstruction Decoder 6.50 40.50 0.75 4.20 1.50 0.85 0.65
FILM+nnUnet 6.60 42.20 0.85 4.30 1.60 0.88 0.68
FILM+nnUnet-P 6.65 41.00 0.80 4.25 1.55 0.86 0.67
wlo L4 in pre-training stage 6.70 46.00 0.89 4.40 1.70 0.90 0.71
wlo L4 in cooperative training stage  6.78 45.31 0.83 4.38 1.65 0.89 0.70
w/o cross-attention mechanism 6.73 43.79 0.86 4.35 1.62 0.88 0.69
Ours 6.86 47.05 0.98 4.50 1.75 0.95 0.75

CT MRI

DIDFuse U2Fusion RFN-Nest

CDDFuse

Figure 6: Qualitative comparison results on Harvard dataset.

Results of medical image segmentation

In this section, we test the image segmentation results with
the state-of-the-art methods including UNet 3+(Huang et al.
2020), AttnUNet(Oktay et al.|[2018)), SwinUNet(Cao et al.
2022), CASCADE(Rahman and Marculescu 2023)), EM-
CAD(Rahman, Munir, and Marculescu|2024). Moerover, we
construct additional baseline by combing the state-of-the-art
image fusion method, i.e., FILM(Zhao et al.|2024)), with seg-
mentation nnUnet(Isensee et al.||2021)), which is labeled as
FILM-+nnUnet. To make fair comparison, we further add
our pre-trained encoder into this framework and construct a
baseline labeled as FILM+nnUnet-P. We choose three ef-
fective metrics to measure the quantitative performance of
MIF task, i.e., DICE score, mloU and HD95. Tab.[l|demon-
strate the quantitative comparison results our BraTS-Fuse
dataset with two modalities, respectively. More experiment
results with three and four modalities on our benchmark are
shown in the supplementary material.

Ablation Studies

To evaluate the effectiveness of our proposed architecture,
we conducted a comprehensive ablation study. Initially, we
eliminated the reconstruction decoder from the fusion net-
work structure and modified the inputs of the segmentation
network to directly utilize the fused embedding, rather than
the complete fused image. The results of this ablation exper-
iment were particularly illuminating. Our quantitative anal-
ysis revealed that this alternative approach yielded inferior
performance metrics compared to our original architectural

design, underscoring the critical role of the complete fused
image as a conditioning input for the segmentation task.
Moreover, to gauge the full potential and limitations of our
model, we systematically adjusted the network architecture.
This additional set of experiments was designed to deter-
mine the upper and lower bounds of the model’s capabilities,
enabling us to identify the optimal structural configuration.
We evaluate the model in the situation of w/o E"Edrfc in pre-
training stage and cooperative training stage, test the model
w/o attention module to demonstrate cross-modality ability.

Furthermore, we demonstrated the generalizability of
our Fuse4Seg structure by implementing two variants:
FILM+nnUnet and FILM+nnUnet-P in Tab. [I] and Tab.
Both methods consistently outperformed their vanilla coun-
terparts, underscoring the potential of our Fuse4Seg struc-
ture as a general enhancement framework for existing seg-
mentation models. More results shown in supplementary
materials.

Conclusion and Extensions

This paper introduces a novel image-level fusion method
for multi-modality medical image segmentation. Our ap-
proach, for the first time, employs bi-level learning to simul-
taneously optimize the medical image fusion network and
segmentation network (Fuse4Seg), utilizing a pre-trained
feature decomposition encoder and a cross-modal attention
mechanism-guided fusion network, with a skip-connected
transformer encoder serving as the segmentation network.
This method enhances the accuracy and interpretability of
fused images, as demonstrated through rigorous evaluations
on the proposed BraTS-Fusion benchmark and other public
datasets. Our method, originally designed for medical image
multimodal fusion, shows promising potential for extension
to natural images. To evaluate this, we tested our method on
several natural image datasets, including TNO and MSRS,
and observed that it maintains its capability to integrate di-
verse sources of information to produce high-quality fusion
results. Future work will focus on expanding our approach
to other natural image scenarios, assessing its effectiveness
across additional datasets, and refining the method to further
enhance its versatility and performance.
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